
Reverse Engineering

Assembly Review

Instructor: G Leaden Due: See Syllabus (Friday)
Email: g.leaden1@marist.edu Place: Hancock 2023

Goals:
Understanding assembly instructions is essential to reversing a compiled program. This worksheet should

be filled out, then used as a reference in the future.

Instructions:
Explain what each instruction does, and give an example of C/C++ code that would compile into that

instruction.

1. MOV

2. POP

3. PUSH

4. LEA

5. ADD

6. SUB

7. JNE

8. JLE

9. JMP

10. CMP

11. CALL, RET

12. IMUL, MUL

13. NOP

14. AND

15. OR

Submitting:
Print out the answers, and hand it in on the due date.

Grading Rubric:
Each Problem . 6.66666666667%

page 1 of 5

g.leaden1@marist.edu

Reverse Engineering January 4, 2019

ANSWERS

1. MOV
Move.
Copies data from one location to another.

1 void f(){

2 int a;

3 a=1; // Here

4 }

2. POP
Pop. Pop data from stack.

1 void f(){

2 int a;

3 a=1;

4 int b = a + 1; // Here

5 }

3. PUSH
Push. Push data onto the stack.

1 void f(){ // Here

2 int a;

3 a=1;

4 int b = a + 1;

5 }

4. LEA
Load Effective Address. Calculate the address of an array element by adding the array address, element
index, with multiplication of element size.

1 int f(int a, int b){

2 return a*8+b; \\ Here

3 };

5. ADD
Add two values.

1 void f(){

2 int a;

3 a=1;

4 int b = a + 1; // Here

5 }

6. SUB
Subtract two values.

page 2 of 5

Reverse Engineering January 4, 2019

1 void f(){

2 int a;

3 a=1;

4 int b = a - 1; // Here

5 }

7. JNE
Jump Not Equal.
Jump to address when the result of a CMP is not equal to 0

1 int f(int a){

2 if (a == 8){ // Here

3 return 1;

4 }

5 }

8. JLE
Jump Less Equal.
Jump to address when the result of a CMP is lesser or equal

1 int f(int a){

2 if (a > 8){ // Here

3 return 1;

4 }

5 }

9. JMP
Jump.
Jump to an address.

1 int f(int a){

2 if (a > 8){

3 goto asdf; // Here

4 }

5 int b = a;

6 asdf: if (a == 3){

7 return 3;

8 }

9 return 0;

10 }

10. CMP
Compare. Compares the first source operand with the second source operand and sets the status flags in
the EFLAGS register according to the results.

1 int f(int a){

2 if (a > 8){ // Here

3 return 1;

4 }

5 }

page 3 of 5

Reverse Engineering January 4, 2019

11. CALL, RET
Call and Return.
The call instruction first pushes the current code location onto the hardware supported stack in memory
and then performs an unconditional jump to the code location indicated by the label operand. Unlike
the simple jump instructions, the call instruction saves the location to return to when the subroutine
completes.
The ret instruction implements a subroutine return mechanism. This instruction first pops a code location
off the hardware supported in-memory stack. It then performs an unconditional jump to the retrieved
code location.

1 int f(int a){

2 if (a > 8){

3 return 1; // And Here

4 }

5 }

6

7 void main(){

8 int value = f(9); // Here

9 }

12. IMUL – Know all forms. Only need to provide one example.
Signed multiply. Performs a signed multiplication of two operands. This instruction has three forms,
depending on the number of operands.

One-operand form. This form is identical to that used by the MUL instruction. Here, the source operand
(in a general-purpose register or memory location) is multiplied by the value in the AL, AX, or EAX
register (depending on the operand size) and the product is stored in the AX, DX:AX, or EDX:EAX
registers, respectively.

Two-operand form. With this form the destination operand (the first operand) is multiplied by the source
operand (second operand). The product is then stored in the destination operand location (a register)

Three-operand form. This form requires a destination operand (the first operand) and two source operands
(the second and the third operands). Multiply second and third operands togehter, storing in the first
operand register.

1 int f(int a){

2 if (a > 8){

3 return a*90; // Here

4 }

5 }

13. NOP
No Operation.
Performs no operation. This instruction is a one-byte instruction that takes up space in the instruction
stream but does not affect the machine context, except the EIP register.

1 void f(){

2 }

page 4 of 5

Reverse Engineering January 4, 2019

14. AND
Bitwise AND.
These instructions perform a logical bitwise and on its operands, placing the result in the first operand
location.

1 int f(int a){

2 if (a > 8){

3 return a&90; // Here

4 }

5 }

15. OR
Bitwise OR.
These instructions perform a logical bitwise or on its operands, placing the result in the first operand
location.

1 int f(int a){

2 if (a > 8){

3 return a|90; // Here

4 }

5 }

page 5 of 5

