REVERSE ENGINEERING

Final Project

Instructor: G Leaden Due: Final Start Time
Email: g.leadenl@marist.edu Place: Hancock 2023

Goals:
This project is the culmination of all of the topics reviewed in the course. You will take a compiled program
of unknown origin and walk through understanding and cracking said program (binary).

Instructions:

1. Download an executable from the website https://crackmes.one/. I reccomend a difficulty level of 2. If
you choose to go higher than 2, you will be awarded an additional 5% on your grade for the assignment.
If you choose a program that is difficulty 1, you will be deducted 5% on your grade for the assignment.

2. Utilize the skills we have honed through this class to view the machine code of the executable, and
understand how you can attain the desired output. I recommend reviewing the list of tools mentioned in
Chapter 7 of our book.

3. Take notes through this process, it will greatly help you when completing the next steps.

4. Create a guide on how the program works. Show machine code, explain it, and walk through the process
to the correct output. Highlight mistakes made, and how they helped you through the process.

5. Include a preamble explaining the executable, and outlining a specific topic that was either especially
compelling to you, or relevant to the reversing of the program.

This project can be submitted as any medium you would like, as long as the instructions are followed and
requirements are met. Be creative!
Example Mediums:
Video
Poster (Example Included)
PowerPoint
Paper
Mural
etc.

Submitting:
Email me your final project BEFORE the due date.

Grading Rubric:

TOPIC SUIMINIATY .. o\ ettt ettt et et e e ettt et e e e e e e e e e e e e et 15%
Flow of Visual Guide (does it make SEISE)ottt 20%
Explanation of Assembly Instructions / Memory Managementc.o.ueiiiniiiiniiinanneen.. 20%
Walkthrough and Explination of the Binary e 45%
Example:

An example is provided on the next page and link to the .keynote source file is available on the website.

page 1 of 2

g.leaden1@marist.edu
https://crackmes.one/

January 4, 2019

meerimng

Reverse Engineering Final Project

G Leaden

Professor. G Leaden

; Attributes: bp-based frame

int _ cdecl main(int argc, const char **argv, const char **envp)
public main
ain proc near

ar 10= gword ptr -
ar 4= dword ptr

rbp, rs

rsp,
[rbp+var_4],
[rbp+var_10], rs
[rbp+var 4],
short loc_1257

[rbpt+var 10]

Topic Summary

Choose a topic that was either the most compelling for you, or one that relates heavily to the program you are cracking.
Summarize it.

Provide insight into why it was compelling / is relevant.

X64 Instructions, CPU Register Sizing - Add anything relevant

to understanding the reversing here

[rax]

rali, rax

_strlen

byte ptr [rax]

rdi, aNiceJob Nice Job!!"

rdi, aFlags "flag{%s}\n"

short loc_1266

mov D,S Move source to destination movzx D,S Move source to destination with zero-extentsion

add D,S Add source to destination lea DS Loads source address into destination register

call Label Push return address and jump to label leave Releases stack space allocated to frame

cmp S2,51 Set condition codes according to S1 - S push S Pushes source onto stack

jnz Label Jump to label if not equal to 0 ret Returns to calling procedure

Smp Label Jump to label AH (8 bits) | AL (8 bits)
RAX (64 bits) _ EAX (32 bits) AX (16 bits)

Cracking the Code (Understanding the Binary)

Visual Guide

Reverse Eng

The assembly language on the left is the lowest level code that’s still “human-readable” before it is converted into Os and 1s for the
hardware to execute. This was obtained by disassembling an executable file. This file was once written in a high level programming
language like C or C++ before being compiled and output as assembly language code.

This program is designed to take a password as an argument, and if the password meets the requirements, it will output “Nice Job!!”,
followed by “flag{<password>}". If the password does not meet the requirements, or the incorrect number of arguments are passed,
the program will call a usage method that outputs:

“USAGE: ./<filename> <password>

There are three instances where the usage method is called. Each occurs after a cmp followed by a jnz.
1. 2 - [rbptvar 4]
2. 10 - strlen(xdi)
3. @ - al

Once we have a password that will satisfy each of these compare instructions with a result of 0, we will have achieved our goal.
Starting with nothing but an executable file, we are able to identify a pattern that will always result in a successful password. Can you
crack the code?

