
Advisor: Alan G. Labouseur
Alan.Labouseur@Marist.edu

Teaching CS Concepts through
Reverse Engineering

Adventures in Pedagogy and Binary Exploitation

Marist College
School of Computer Science and Mathematics

Poughkeepsie, NY 12601

G Leaden
G.Leaden1@Marist.edu

Intro Lecture

mailto:alan.Labouseur@marist.edu
mailto:G.Leaden1@Marist.edu

!2Leaden

Hardware
• Deciphering designs from finished products to…

• Improve your own products
• Analyze a competitors products

“the process of developing a set of a specifications for a complex
hardware system by an orderly examination of specimens of that system”
- Michael George Rekoff

Software
• Gain a sufficient design-level understanding to…

• Aid maintenance
• Design recovery
• Re-Documentation

• Strengthen enhancement
• Identify and patch exploits, unintended side effects, bugs
• Security defense and offense

• Support replacement
• Restructuring
• Reuse

What is Reverse Engineering?

Draft 1.0

!3

Requirements
• Specification of the

problem being solved,
including objectives,
constraints, and business
rules

Design
• Specification of the

solution

Implementation
• Coding, testing, and

delivery of system

Reverse Engineering Taxonomy Eliot Chikofsky, James Cross II

LeadenDraft 1.0

!4

Reverse Engineering Taxonomy Eliot Chikofsky, James Cross II

Leaden

Forward Engineering
• Moving from high level

abstractions and logical
implementation-
independent designs to
physical implementation 

• Inverse of Reverse
Engineering

Draft 1.0

!5

Reverse Engineering Taxonomy Eliot Chikofsky, James Cross II

Leaden

Reverse Engineering (RE)
• Analyzing a system to:

• Identify the systems
components and their
interrelationships  

• Create representations of
the system in another
form or at a higher level
of abstraction 

• Synthesizing abstractions
that are less implantation
dependent  

• Can be done from any level
of abstraction and at any
stage in the software
engineering life cycle

Draft 1.0

!6

Reverse Engineering Taxonomy Eliot Chikofsky, James Cross II

Leaden

Forms of RE

Redocumentation
• Simple, Old

• Unintrusive and weak
form of restructuring

• Creation or revision of a
semantically equivalent
representation with the
same relative abstraction
level

• Creating documentation
• Class Diagrams
• Functional Diagrams
• README
• etc

Draft 1.0

!7

Reverse Engineering Taxonomy Eliot Chikofsky, James Cross II

Leaden

Forms of RE

Restructuring
• Transformation from one

representation form to
another at the same relative
abstraction level, while
preserving external
behavior

• Altering code to improve
structure

• May lead to better
observations of the subject
system that could lead to
the suggestion of changes
that would improve aspects
of the system

• Should not change
overall functionality of
system itself

Draft 1.0

!8

Reverse Engineering Taxonomy Eliot Chikofsky, James Cross II

Leaden

Forms of RE

Reengineering
• Examination and alteration

of a system to create a new
system

• Implementing that new
system in order to obtain a
more abstract view

• Requires: Some form of
Restructuring,
Redocumentation,
Reverse Engineering
along with Forward
Engineering

Draft 1.0

!9

Reverse Engineering Taxonomy Eliot Chikofsky, James Cross II

Leaden

Forms of RE

Reengineering..
• Reengineering an

information-management
system

• Organization reassess
how the system
implements high level
business rules and
makes modifications to
conform to changes in
the business for the
future  

• While involves both
forward and reverse
engineering, it is not a
supertype of the two

• Both RE and FE are rapidly evolving independent
of their application within reengineering

Draft 1.0

!10

Reverse Engineering Taxonomy Eliot Chikofsky, James Cross II

Leaden

Reverse Engineering Overview
• Purpose

• Increase overall comprehensibility of
the system. For both maintenance
and development.

• 6 Objectives
• Cope with complexity
• Generate alternate views

• Recover lost information
• Detect side effects
• Synthesize higher abstractions
• Facilitate reuse

Differences in viewpoints

Draft 1.0

!11

Reverse Engineering Taxonomy Eliot Chikofsky, James Cross II

Leaden

Objectives of RE

Cope with complexity
• Extracting relevant information from a system

so decision makers can control both the
processes and the product in systems evolution

Generate alternate views
• Graphical representations used as

comprehension aids
• RE tools remove the “drag” that typically come

with generating these documents by
automating the process.

• Not perfect.
• Abstracting and generalizing from source/

compiled code
• CASE tools

Draft 1.0

!12

Reverse Engineering Taxonomy Eliot Chikofsky, James Cross II

Leaden

Objectives of RE

Generate alternate views
• Graphical representations used as

comprehension aids
• RE tools remove the “drag” that typically come

with generating these documents by
automating the process.

• Not perfect.
• Abstracting and generalizing from source/

compiled code
Recover lost information

• Long lived systems tend to have information
about modifications and perhaps even original
designs that are lost to the passage of time

Draft 1.0

!13

Reverse Engineering Taxonomy Eliot Chikofsky, James Cross II

Leaden

Objectives of RE

Detect side effects
• By generating designs and observing the system

from its implementation instead of its design,
we are able to identify unintended side effects

• Bugs
• Exploits
• Errors

Synthesize higher abstractions
• Generating views such as class diagrams using

CASE programs
• This is probably the least effective objective of

RE.
• There is heavy debate dating back to 30+

years ago as to how much of this process can
be automated

Facilitate reuse
• RE can be used to identify components in existing systems that can be used in future

reengineered versions.
Draft 1.0

!14

Reverse Engineering Importance

Leaden

Is RE Important?

• Economics
• The cost of understanding software

• Time required to comprehend
• Time lost to misunderstanding

• RE minimizes both, expanding to virtually all
aspects of the software engineering life cycle

• If I right perfect code, is this important?
• No.
• You don’t write perfect code.

• Maintenance is considered a cost center.
• Documentation is often overlooked or rushed
• Data loss cannot be 100% mitigated

• Is it useful?
• Yes.

• Y2K Example

Draft 1.0

!15

Reverse Engineering in Software Security

Leaden

What is it?
• Defensive

• The implementation of tools and techniques covered already, for
security purposes.
• Understanding a system
• Identifying flaws or bugs
• Securing against the:

• Offensive
• Obtaining a desired output or state in a program with little to no

knowledge on how to obtain through intended means.
• Analyze the logic of the program in its normal behavior
• Analyze which computations are done on test input
• Analyze the logic of program when given unexpected input
• Analyze behavior to see new behavior can be exploited

Why is it Important?
• To Defend and Offend

Draft 1.0

!16

Reverse Engineering in Software Security

Leaden

Offensive Example

POSTER	GOES	HERE

Draft 1.0

Teaching	CS	Concepts	through	Reverse	Engineering	
Adventures	in	Pedagogy	and	Binary	Exploitation		
G	Leaden	
Advisor:	Alan	G.	Labouseur

What	is	Reverse	Engineering?

Cracking	the	Code	(Understanding	the	Binary)	

Reverse	engineering	(RE)	is	the	process	of	deciphering	designs	from	an	already	finished	product.	In	computer	science	
(CS),	that	means	gaining	sufficient	design-level	understandings	of	already	funcAonal	programs	and	systems.	Reverse	
engineering	can	be	used	as	a	means	to	teach	CS	fundamentals	such	as	computer	organizaAon,	architecture,	security,	
and	the	soDware	development	life	cycle.	Teaching	through	RE	has	the	ability	to	give	students	a	unique	perspecAve	
into	how	their	code	looks	and	operates	at	the	lowest	level.	

x64	Instructions,	CPU	Register	Sizing	

The	assembly	code	on	the	leD	represents	the	most	basic	version	of	code	that	is	“human-readable”	before	it	is	
converted	into	1’s	and	0’s	for	the	CPU	to	execute.	This	was	obtained	by	disassembling	an	executable	file.	This	file	was	
once	wriQen	in	a	programming	language	such	as	C/C++	and	had	its	own	source	code,	but	was	compiled	then	
disassembled	into	assembly	code.	

This	program	is	designed	to	take	a	password	as	an	argument,	and	if	the	password	meets	the	requirements,	it	will	
output	“Nice	Job!!”,	followed	by	“flag{<password>}”.	If	the	password	does	not	meet	the	requirements,	or	the	
incorrect	number	of	arguments	are	passed,	the	program	will	call	a	usage	method	that	outputs:		
“USAGE:	./<filename>	<password>	
		try	again!”	

There	are	three	instances	where	the	usage	method	is	called.	Each	occurs	aDer	a	cmp	followed	by	a	jnz.	
1. 2 - [rbp+var_4]
2. 10 - strlen(rdi)
3. @ - al

Once	we	have	a	password	that	will	saAsfy	each	of	these	compare	instrucAons	with	a	result	of	0,	we	will	have	
achieved	our	goal.	StarAng	with	nothing	but	an	executable	file,	we	are	able	to	idenAfy	a	paQern	that	will	always	result	
in	a	successful	password.	Can	you	crack	the	code?

mov D,S Move	source	to	desAnaAon movzx D,S Move	source	to	desAnaAon	with	zero-extentsion

add D,S Add	source	to	desAnaAon lea D,S Loads	source	address	into	desAnaAon	register
call Label Push	return	address	and	jump	to	label leave Releases	stack	space	allocated	to	frame
cmp S2,S1 Set	condiAon	codes	according	to	S1	-	S2 push S Pushes	source	onto	stack
jnz Label Jump	to	label	if	not	equal	to	0 ret Returns	to	calling	procedure

jmp Label Jump	to	label

RAX	(64	bits) EAX	(32	bits) AX	(16	bits)

AH	(8	bits) AL	(8	bits)

!17

Until next time

Draft 1.0 Leaden

Teaching CS Concepts through
Reverse Engineering

Adventures in Pedagogy and Binary Exploitation

G Leaden
G.Leaden1@Marist.edu

Advisor: Alan G. Labouseur
Alan.Labouseur@Marist.edu

mailto:G.Leaden1@Marist.edu
mailto:alan.Labouseur@marist.edu

