
G Leaden - Week 10 Reverse Engineering

Week 10. Data Structures, Integral Data Types, Integer
Overflow, Endianness

Data Structures

Arrays

- Arrays a kind of data structure that can store a fixed-size sequential collection of
elements of the same type.

- AKA “homogeneous container”

- Consider this code chunk:

#include <stdio.h>
int main() {
 int a[20];
 int i;
 for (i=0; i<20; i++)
 a[i]=i*2;
 for (i=0; i<20; i++)
 printf ("a[%d]=%d\n", i, a[i]);
return 0; };

- Review with godbolt.org or radare2, walk through the population and printing of
the array. Should be straightforward this far into the semester.

- The variable a is type int* (pointer to an int). When passing an array to another
function, you can technically pass a pointer to that array, but typically you are
passing the pointer to the first element in that array, the rest to be calculated in
an obvious way.

- This can be demonstrated by stepping through a program which passes an
array with radare2 debug mode (and visual mode to view the stack).

- If you index this pointer as a[2], 2 is just to be added to the pointer and the
element placed there (to which calculated pointer is pointing) is to be returned.

- In C/C++, a string is actually a const char[] (char array) and can be indexed
the same way any other array can. “string”[2] would return ‘r’

- This can also easily be demonstrated

- Buffer Overflows revisited:

- Less fun / malicious overflows

http://godbolt.org

G Leaden - Week 10 Reverse Engineering

- AKA. Segmentation Fault

- Consider and compile the following code block:

#include <stdio.h>
int main() {
 int a[20];
 int i;
 for (i=0; i<30; i++)
 a[i]=i;
return 0;
};

- Executing this code will result in a seg fault

- GDB and/or Radare2 will help identify when and where segfault occurs.
Debugging can be useful!

- With all of this in mind….

- Why is this impossible?

void f(int size)
{
 int a[size];
...
};

- That’s just because the compiler must know the exact array size to allocate
space for it in the local stack layout on at the compiling stage.

- If you need an array of arbitrary size, allocate it by using malloc(), then
access the allocated memory block as an array of variables of the type you
need.

- Thats what you get for not having garbage collectors

- Conclusion

- An array is a pack of values in memory located adjacently.

- It’s true for any element type, including structures.

- Access to a specific array element is just a calculation of its address.

- A pointer to an array and address of a first element—is the same thing. This
is why ptr[0] and *ptr expressions are equivalent in C/C++.

Structures

G Leaden - Week 10 Reverse Engineering

- User defined data type available in C that allows the user to combine data items of
different type.

- AKA “heterogeneous container”

- Consider the tm struct in UNIX:

- Once this is compiled

- Run through debug mode in radare2

- Set breakpoints at sys.printf

- Continue until breakpoint, then view stack in visual mode

- You can see the struct in the stack, but we dont know how the tm struct is
defined in time.h

- LETS FIND OUT

struct tm {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;

G Leaden - Week 10 Reverse Engineering

 int tm_isdst;
};

- Int is 32 bytes

- Stack should look something like this (translated)

- �

- Although this struct contains ONLY int values, it follows generally that the only
difference would be the byte size in the stack depending on type.

- Fields Packing

- Consider this code block:

#include <stdio.h>
struct s {
 char a;
 int b;
 char c;
 int d;
};
void f(struct s s)
{
 printf ("a=%d; b=%d; c=%d; d=%d\n", s.a, s.b, s.c,
s.d);
};
int main() {
 struct s tmp;
 tmp.a=1;
 tmp.b=2;
 tmp.c=3;
 tmp.d=4;
 f(tmp);
};

G Leaden - Week 10 Reverse Engineering

- We have 2 char fields (1 byte each) and 2 int fields (4 bytes each)

- When compiled, we see that space is reserved for the struct is 16 bytes.
Why?

- It’s easier for the CPU to access memory at aligned addresses and to
cache data from it.

- Other thing to note, the struct is copied and placed somewhere else,
because the compiler does not know if the f function will modify the struct
or not.

Integral Data Types

- Bit

- Atomic

- Obvious usage for bits are boolean values: 0 for false and 1 for true.

- In C/C++ environment, 0 is for false and any non-zero value is for true.

- Nibble

- 4 bits

- Binary-coded decimal

- Almost never seen in practice, except for magic numbers (easy to unpack and
pack a BCD)

- Byte

- Byte is primarily used for character storage. 8-bit bytes were not common as
today. Punched tapes for teletypes had 5 and 6 possible holes, this is 5 or 6 bits
for byte.

- char one byte character (PDP-11, IBM360: 8 bits; H6070: 9 bits)

- C language manual

- Word

- Data type for general purpose registers.

- Bytes are practical for characters, but impractical for other arithmetical
calculations.

G Leaden - Week 10 Reverse Engineering

- Hence, many CPUs have GPRs with width of 16, 32 or 64 bits.

- There was a time when hard disks and RAM modules were marketed as having
n kilo-words instead of b kilobytes/megabytes.

- Int is typically stored as a Word

- 16-bit C/C++ environment on PDP-11 and MS-DOS has long data type with width
of 32 bits, perhaps, they meant long word or long int?

- 32-bit C/C++ environment has long long data type with width of 64 bits.

- GDB has the following terminology: halfword for 16-bit, word for 32-bit and giant
word for 64-bit.

- The word Word is very ambiguous.

- Signed and Unsigned Numbers

- Some may argue, why unsigned data types exist at first place, since any unsigned
number can be rep- resented as signed. Yes, but absence of sign bit in a value
extends its range twice. Hence, signed byte has range of -128..127, and unsigned
one: 0..255.

- Another benefit of using unsigned data types is self- documenting: you define a
variable which can’t be assigned to negative values.

- Unsigned data types are absent in Java, for which it’s criticized. It’s hard to
implement cryptographical algorithms using boolean operations over signed
data types.

- Values like 0xFFFFFFFF (-1) are used often, mostly as error codes.

- Computers typically utilize two’s compliment to represent signed numbers.

- Numbers can be signed or unsigned.  

- C/C++ signed types:

- int64_t (-9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807) (- 9.2.. 9.2
quintillions) or 0x8000000000000000..0x7FFFFFFFFFFFFFFF),

- int (-2,147,483,648..2,147,483,647 (- 2.15.. 2.15Gb) or
0x80000000..0x7FFFFFFF),

- char (-128..127 or 0x80..0x7F),

G Leaden - Week 10 Reverse Engineering

- ssize_t. Unsigned:

- uint64_t (0..18,446,744,073,709,551,615 (18 quintillions) or
0..0xFFFFFFFFFFFFFFFF), – unsigned int (0..4,294,967,295 (4.3Gb) or
0..0xFFFFFFFF),

- unsigned char (0..255 or 0..0xFF),

- size_t.

- Signed types have the sign in the most significant bit: 1 means “minus”, 0 means
“plus”.

- Promoting to a larger data types is simple: 1.28.5 on page 405.

- Negation is simple: just invert all bits and add 1.  
We can keep in mind that a number of inverse sign is located on the opposite side
at the same proximity from zero. The addition of one is needed because zero is
present in the middle.

- The addition and subtraction operations work well for both signed and unsigned
values. But for multiplication and division operations, x86 has different
instructions: IDIV/IMUL for signed and DIV/MUL for unsigned.

Integer Overflow

- First, take a look at this implementation of itoa() function from [Brian W. Kernighan,

Dennis M. Ritchie, The C Programming Language, 2ed, (1988)]:

- It has a subtle bug. Try and identify it.

void itoa(int n, char s[])
{
 int i, sign;
 if ((sign = n) < 0) /* record sign */
 n = -n; /* make n positive */
 i = 0;
 do { /* generate digits in reverse order */
 s[i++] = n % 10 + '0'; /* get next digit */
 } while ((n /= 10) > 0); /* delete it */
 if (sign < 0)
 s[i++] = '-';
 s[i] = '\0';
strrev(s);
}

G Leaden - Week 10 Reverse Engineering

- In a two’s complement number representation, our version of itoa does not handle
the largest negative number, that is, the value of n equal to −(2wordsize−1). Explain why
not. Modify it to print that value correctly, regardless of the machine on which it runs.

- The answer is: the function cannot process largest negative number (INT_MIN or
0x80000000 or -2147483648) correctly.

- How to change sign? Invert all bits and add 1. If to invert all bits in INT_MIN value
(0x80000000), this is 0x7fffffff. Add 1 and this is 0x80000000 again. So changing
sign has no effect. This is an important artifact of two’s complement system.

Endianness

- Endianness refers to the sequential order in which bytes are arranged into larger
numerical values when stored in memory or when transmitted over digital links.

- Two conflicting and incompatible formats are in common use:

- Big-endian

- Big end (most significant bit)

- The 0x12345678 value is represented in memory as:

- �

- Some current big-endian architectures include the IBM z/Architecture, Freescale
ColdFire (which is Motorola 68000 series-based), Xilinx MicroBlaze,
Atmel AVR32.

- Little-endian

- Little end (least significant bit)

- The 0x12345678 value is represented in memory as:

G Leaden - Week 10 Reverse Engineering

- �

- The Intel x86 and also AMD64 / x86-64 series of processors use the little-
endian format, and for this reason, it is also known in the industry as the "Intel
convention”.

- Bi-endian

- Capable of computing or passing data in either endian format.

- Some architectures (including ARM versions 3 and
above, PowerPC, Alpha, SPARC V9, MIPS, PA-RISC, SuperH SH-4 and IA-64)
feature a setting which allows for switchable endianness in data fetches and
stores, instruction fetches, or both.

- This feature can improve performance or simplify the logic of networking devices
and software.

