
G Leaden - Week 5 Reverse Engineering

Week 5. Compilers


Compilers


- If you would like to get into the nitty gritty of compiler design, I recommend you take 
Alan Labouseur’s Course on Compiler Design. This lecture only serves as a brief 
introduction to compilers and what you need to know for this course.


- The Compilation Process


- � 


- GCC


- GNU Compiler Collection




G Leaden - Week 5 Reverse Engineering

- When it was first released in 1987, GCC 1.0 was named the GNU C 
Compiler since it only handled the C programming language. It was extended to 
compile C++ in December of that year. 


- Now Supports:

- Objective-C

- Objective-C++ 

- Fortran

- Java

- Ada

- Go

- etc.


- Optimization Levels


- A typical compiler has about three such levels, where level zero means that 
optimization is completely disabled. 


- Optimization can also be targeted towards code size or code speed. A non-
optimizing compiler is faster and produces more understandable (albeit verbose) 
code, whereas an optimizing compiler is slower and tries to produce code that 
runs faster (but is not necessarily more compact). 


- In addition to optimization levels, a compiler can include some debug 
information in the resulting file, producing code that is easy to debug. 


- One of the important features of the ́debug’ code is that it might contain links 
between each line of the source code and its respective machine code address. 


- Optimizing compilers, on the other hand, tend to produce output where entire 
lines of source code can be optimized away and thus not even be present in the 
resulting machine code. 


- Why is this important?


- Reverse engineers can encounter either version, simply because some 
developers turn on the compiler’s optimization flags and others do not. We 
cannot take one compilers output to be the verbatim output of source -> 
machine code, it just mirrors the function of the source.


- GCC Optimization Levels (O)




G Leaden - Week 5 Reverse Engineering

- Most optimizations are completely disabled at -O0 or if an -O level is not set on 
the command line, even if individual optimization flags are specified. Similarly, -
Og suppresses many optimization passes.


- Link to all optimization flags:


- https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


- When the author of this book first started learning C and, later, C++, he used to write 
small pieces of code, compile them, and then look at the assembly language output. 
This made it very easy for him to understand what was going on in the code that he 
had written. 1. He did this so many times that the relationship between the C/C++ 
code and what the compiler produced was imprinted deeply in his mind. It’s now 
easy for him to imagine instantly a rough outline of a C code’s appearance and 
function. Perhaps this technique could be helpful for others. 


- We don’t have to go to this extent, but it will serve as a learning technique.


- Print out or show and assembly instruction reference sheet for the class to use for 
the following.


- Navigate to: https://www.godbolt.org


- Work through with the class exactly what the program is doing with the 
following examples:


- The multiplication one pre-loaded on the site


- Change the optimization levels to see if there is a change, ask for 
predictions before hand


option Optimization level Execution 
time

Code 
size

Memory 
usage

Compile time

-O0 optimization for compilation time 
(default)

+ + - -

-O1 or -O optimization for code size and 
execution time

- - + +

-O2 optimization more for code size 
and execution time

-- + ++

-O3 optimization more for code size 
and execution time

--- + +++

-Os optimization for code size -- ++

-Ofast O3 with fast none accurate math 
calculations

--- + +++

https://www.godbolt.org


G Leaden - Week 5 Reverse Engineering

- Hello World!


- Do a few variations of this, ie:


- Do not show the class the code side, and assign “Hello World!” To a 
variable, show them the machine code, ask what changed.


- Change the code and ask what will or should change in the machine 
code section.


- Create a function then call it from a higher function


- Word appending


- Add 2 to whatever is passed


- Load a caesar cipher program, attempt to decipher it with the class with the 
compiled code.



